Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum
نویسندگان
چکیده
The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na(+) regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na(+) homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na(+) homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes.
منابع مشابه
Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum
Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i) within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not w...
متن کاملNa+ Regulation in the Malaria Parasite Plasmodiumfalciparum Involves the Cation ATPase PfATP4 and Is a Target of the Spiroindolone Antimalarials
The malaria parasite Plasmodium falciparum establishes in the host erythrocyte plasma membrane new permeability pathways that mediate nutrient uptake into the infected cell. These pathways simultaneously allow Na(+) influx, causing [Na(+)] in the infected erythrocyte cytosol to increase to high levels. The intraerythrocytic parasite itself maintains a low cytosolic [Na(+)] via unknown mechanism...
متن کاملIdentification of Potent and Selective Non-covalent Inhibitors of the Plasmodium falciparum Proteasome
We have identified short N,C-capped peptides that selectively inhibit the proteasome of the malaria-causing pathogen Plasmodium falciparum. These compounds are highly potent in culture with no toxicity in host cells. One cyclic biphenyl ether compound inhibited intraerythrocytic growth of P. falciparum with an IC50 of 35 nM, and we show that even a pulse treatment with this cyclic peptide induc...
متن کاملMitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum.
Although mitochondrial electron transport is a validated target of the antimalarial drug atovaquone, the molecular details underlying parasite demise are unclear. We have shown that a critical function of mitochondrial electron transport in blood-stage Plasmodium falciparum is to support pyrimidine biosynthesis. Here, we explore the effects of atovaquone, alone and in combination with proguanil...
متن کاملMutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials
Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole series, GNF-Pf4492, to select for resist...
متن کامل